
10 The Delphi Magazine Issue 70

dbExpress Tips And Tricks
by Guy Smith-Ferrier

Following on from last month’s
introduction to dbExpress by

Bob Swart, here is a selection of
more advanced tips and tricks to
help you get the most from
dbExpress.

Working Without dbxdrivers
And dbxconnections
In last month’s article Bob
explained how dbExpress driver
information (for configuring the
InterBase, MySQL, Oracle and DB2
drivers) is contained in the
dbxdrivers configuration file. He
also mentioned that connection
information (analogous to a BDE
alias) is contained in the dbxcon-
nections file. In Linux these files
are located in the .borland direc-
tory beneath the home directory,
so if you have installed Kylix as the
root user then they will be in
root/.borland. In Windows, both
files are suffixed with .INI and are
located in C:\Program Files\
Common Files\Borland Shared\
DBExpress. You can change this
location by setting DLLPath in

HKEY_CURRENT_USER\SOFTWARE\
BORLAND\DBEXPRESS

in the registry.
Kylix and Delphi developers

have expressed some concern that
these configuration files are open
to the same kinds of problems that
the BDE’s IDAPI.CFG file is and that
the solution for dbExpress is the

same as for the BDE; that is, don’t
use the configuration files. This
section attempts to explain how
these files are used and how this
solution is not a wise approach.

As Bob mentioned, to use a
TSQLConnection just drop one on a
form and set its ConnectionName
property. At this point the dbxcon-
nections and dbxdrivers files are
read. Even if you set just the
Drivers property there is no avoid-
ing reading the dbxdrivers file.
Drop a TSQLClientDataSet, TDataSo-
urce and TDBGrid onto the form and
connect them up so that you can
see a table in the grid. Now rename
the two configuration files and run
the program. The program runs
just fine, despite the fact that the
configuration files have been
renamed (you could have deleted
the files to be absolutely sure but
that is a little bit destructive). The
point is that, at runtime, the
application does not read either of
the configuration files.

By default, these configuration
files are only read at design-time. In
the Form Designer, right-click and
select View as Text and you will see
that all of the configuration infor-
mation has been read from the con-
figuration files and saved as
properties in the form. The result
is that your deployed application
does not need to have the
dbxdrivers and dbxconnections
files installed onto your users’
machines.

Now we know that these files
aren’t needed at runtime it begs
the opposite question: what if I
want to be able to reconfigure my
application’s database connection
after it has been deployed ? If the
application doesn’t read the con-
figuration files how can I change
the location of the database, for
example? You have three choices:
first, you can solve the problem
yourself by reading the appropri-
ate information in the TSQL-
Connection.BeforeConnect event;
or, secondly, you can set TSQL-
Connection.LoadParamsOnConnect to
True to force the configuration files
to be read; or thirdly, you can
use TSQLConnection.LoadParams-
FromINIFile to load the parameters
from a configuration file which
either has a different name or a dif-
ferent location. This last choice
has the benefit that you can have a
‘private’ configuration file which is
only used by your application and
which does not interfere with
other applications and is not inter-
fered with by other applications.

Using dbExpress MetaData
BDE developers will have noted
that dbExpress has no equivalent
to the BDE’s TSession component.
One of the benefits of this compo-
nent is that it allows you to retrieve
metadata (schema information)
about the database. In dbExpress
this same information is provided
by TSQLConnection. The informa-
tion can be accessed by five meth-
ods (GetTableNames, GetFieldNames,
GetIndexNames, GetProcedureNames,
GetProcedureParams) and one prop-
erty (MetaData). At first sight, the
methods appear easy to use. Add a
TSQLConnection and three TList-
Box controls to a form, configure
the TSQLConnection and open it.
Add an OnCreateevent to the form:

SQLConnection1.GetTableNames(
ListBox1.Items);

Add an OnClick event to ListBox1

var
List: TList;
Params: TParams;
intParam: integer;

begin
ListBox5.Clear;
List:=TList.Create;
SQLConnection1.GetProcedureParams(ListBox4.Items[ListBox4.ItemIndex], List);
Params:=TParams.Create;
LoadParamListItems(Params, List);
for intParam:=0 to Params.Count - 1 do
ListBox5.Items.Add(Params.Items[intParam].Name);

Params.Free;
FreeProcParams(List);

end;

➤ Above: Listing 1 ➤ Below: Listing 2

SQLConnection1.GetFieldNames(ListBox1.Items[ListBox1.ItemIndex], ListBox2.Items);
SQLConnection1.GetIndexNames(ListBox1.Items[ListBox1.ItemIndex], ListBox3.Items);

June 2001 The Delphi Magazine 11

(see Listing 1). Run the program
and click on a table in ListBox1 (see
Figure 1).

GetProcedureNames works the
same way, but this is where the
simplicity stops. The code in List-
ing 2 dumps the parameters of the
selected stored procedure (List-
Box4) into a new listbox, ListBox5.

This routine dumps the stored
procedure parameters into a TList.
LoadParamListItems then copies the
TList items into a TParams and
finally the list of parameters is
added to the TListBox (not forget-
ting to call FreeProcParams to free
the original TList).

TSQLDataSet.SetSchemaInfo
The eager amongst us will, at this
point, be wondering how to get at
all of the other schema information
we want, apart from the tables,
indexes and fields. What about
views and primary keys? This infor-
mation is available, but you need to
employ a little cunning.

When we used GetFieldNames we
simply retrieved a list of the field
names. We all know that there is
more information about fields than
just their names. To return this
information dbExpress takes the
same attitude that ADO does and
returns rectangular data as a
dataset. Add a TSQLDataSet to the
last application and set SQLConn-
ection to SQLConnection1. Add a
TDataSetProvider and set DataSet
to SQLDataSet1. Add a TClientData-
Set and set ProviderName to Data-
SetProvider1. Add a TDataSource
and a TDBGrid to show the contents
of ClientDataSet1. Add a button
with the following code:

SQLDataSet1.SetSchemaInfo(
stColumns, ‘CUSTOMER’, ‘’);

ClientDataSet1.Open;

SetSchemaInfo instructs the dataset

to retrieve schema
information inst-
ead of data. In this
example (Listing 3)
it is the columns of
the CUSTOMER table.
The result is that

ClientDataSet1 contains all of the
information about the columns of
the Customer table.

We can use Listing 3, for exam-
ple, to get a list of views, or all of
the index information for the Cus-
tomers table sorted in index name
order (Listing 4).

In InterBase the CUSTREGION index
has two fields and so there are two
rows for the CUSTREGION index. To
get a list of primary keys for the
Customers table you have to be
especially cunning. The code in
Listing 5 retrieves a list of indexes
for the Customers table and filters
the list so that only those indexes
which exist to support a primary
key are included.

Executing SQL Directly
As you will be aware, dbExpress
datasets are read-only. Any
attempt to edit or insert a record
generates a ‘Cannot modify a
read-only dataset’ exception
(delete, however, does nothing
and does not raise an exception).

So, to update data you must either
use a TClientDataSet or a TSQL-
ClientDataSet, or execute your
own SQL directly. For this latter
purpose we have ExecuteDirect
and Execute. ExecuteDirect allows
us to execute a statement immedi-
ately without supplying any
parameters (Listing 6).

The return result indicates the
success of the execution. A posi-
tive value is the number of records
and a negative value is the
dbExpress error code. To supply
parameters to a statement we use
Execute (Listing 7).

dbExpress Error Codes
dbExpress error codes are posi-
tive numbers. Each error code has
a corresponding error string in the
SQLConst unit. Also in this unit is an
array called DBXErrorwhich is a list
of all of the error strings. The array
is in the same numeric order as the
error numbers, so a dbExpress
error 3 is the fourth element in the
array (element 0 is not an error and
is therefore just an empty string).
A consequence of this is that it is
easy to write a simple dbExpress
error code translator (Listing 8).

Connection Cloning
TSQLConnection has a property
called ActiveStatements which
reveals the number of statements
which are using the connection at

➤ Figure 1

SQLConnection1.TableScope:=[tsView];
SQLDataSet1.SetSchemaInfo(stTables, '', '');
ClientDataSet1.Open;

SQLDataSet1.SetSchemaInfo(stIndexes, 'CUSTOMER', '');
ClientDataSet1.IndexFieldNames:='INDEX_NAME';
ClientDataSet1.Open;

SQLDataSet1.SetSchemaInfo(stIndexes, 'CUSTOMER', '');
ClientDataSet1.IndexFieldNames:='INDEX_NAME';
ClientDataSet1.Filter:='PKEY_NAME IS NOT NULL';
ClientDataSet1.Filtered:=True;
ClientDataSet1.Open;

var
intResult: integer;

begin
intResult:=SQLConnection1.ExecuteDirect(
'UPDATE CUSTOMER SET CONTACT_FIRST = "Marge" '+
'WHERE CUSTOMER = "Mrs. Beauvais"');
if intResult >= 0 then
ShowMessage('Success ('+IntToStr(intResult)+')')

else
ShowMessage('Failed ('+IntToStr(intResult)+')');

end;

➤ Above: Listing 3 ➤ Below: Listing 4

➤ Above: Listing 5 ➤ Below: Listing 6

12 The Delphi Magazine Issue 70

any one time. For example, if you
open a TSQLDataSet then ActiveSta-
tements will be increased by one
until the dataset is closed. When
you execute a statement using Exe-
cute or ExecuteDirect then the
number of active statements is
increased by one for the duration
of the execution. For databases
such as InterBase this might be
mildly interesting, but it is of little
consequence. Instead, it has a sig-
nificant effect on databases such
as MySQL. TSQLConnection has
another property called MaxStmts-
PerConn, which returns the maxi-
mum number of statements which
the database server will allow to
use the connection. For InterBase,
Oracle and DB2, this value is 0, indi-
cating that the server does not
impose a limit, but for MySQL this
value is 1, indicating that a single
statement can use this connection
at any one time. In theory, if you
were to attempt to have two
TSQLDataSets using the same con-
nection then the second dataset to
open would generate an exception.
If this were true then it would radi-
cally alter the way developers
would use dbExpress by forcing
developers to have a TSQLConn-
ection for every TSQLDataSet. Fortu-
nately, TSQLConnection has a
built-in solution to this problem in
the form of AutoClone. When
AutoClone is True, which is the
default, TSQLConnection will create
subsequent clones of itself as

necessary to cope with the addi-
tional need for connections. Con-
sequently, you can continue to use
TSQLConnection in the same way for
MySQL as for InterBase without
yielding to the limits of the lowest
common denominator (ie MySQL).

Alternatively, you can set
AutoClone to False and take control
of the cloning process yourself.
You could, for example, create a
BeforeConnect event for your
TSQLConnection and check to see if
ActiveStatements is equal to
MaxStmtsPerConn and, if so, call
CloneConnection to create a new
clone. The benefit of taking control
of this process is that it would
allow you to impose an upper limit

on the maximum number of con-
nections for a given user.

With all this said, it should also
be noted that the very design of
dbExpress means that the number
of active statements is typically
lower than that of the BDE. If, for
example, you intend to allow your
users to scroll back and forth
through the result set, then in
dbExpress you will be using either
a TClientDataSet directly or a
TSQLClientDataSet. Either way, the
data will be read into the Client-
DataSet and the necessary SELECT
statement closed immediately.

TSQLMonitor
One of the truly useful utilities
which comes with the Enterprise
version of Delphi is SQL Monitor.
This tool allows you to view the
interaction between the BDE and a
SQL Links driver. It is excellent for
dispelling myths about how TTable
and TQuery really work. dbExpress
has a TSQLMonitor component
which has the same purpose. Drop
a TSQLMonitor on a form and set
SQLConnection to SQLConnection1
and Active to True. Add a TMemo and
a button with the following code:

Memo1.Lines:=
SQLMonitor1.TraceList;

Run the program and click the
button and, assuming you have a

var
Prms: TParams;
intResult: integer;

begin
Prms:=TParams.Create;
try
Prms.CreateParam(ftString, 'CONTACT_FIRST', ptInput);
Prms.ParamByName('CONTACT_FIRST').AsString:='Marge';
Prms.CreateParam(ftString, 'CUSTOMER', ptInput);
Prms.ParamByName('CUSTOMER').AsString:= 'Mrs. Beauvais';
intResult:=SQLConnection1.Execute('UPDATE '+
'CUSTOMER SET CONTACT_FIRST = :CONTACT_FIRST '+
'WHERE CUSTOMER = :CUSTOMER', Prms);

if intResult >= 0 then
ShowMessage('Success ('+IntToStr(intResult)+')')

else
ShowMessage('Failed ('+IntToStr(intResult)+')');

finally
Prms.Free;

end;
end;

function dbxErrorCodeToStr(intdbxError: integer): string;
begin
if (intdbxError > 0) and (intdbxError <= DBX_MAXSTATICERRORS) then
Result:=DBXError[intdbxError]

else
Result:='Unknown error ('+IntToStr(intdbxError)+')';

end;

➤ Above: Listing 7 ➤ Below: Listing 8

INTERBASE - isc_attach_database
INTERBASE - isc_dsql_allocate_statement
INTERBASE - isc_start_transaction
select * from CUSTOMER
INTERBASE - isc_dsql_prepare
INTERBASE - isc_dsql_describe_bind
INTERBASE - isc_dsql_execute
INTERBASE - isc_dsql_allocate_statement
SELECT 0, '', '', A.RDB$RELATION_NAME, A.RDB$INDEX_NAME, B.RDB$FIELD_NAME,
B.RDB$FIELD_POSITION, '', 0, A.RDB$INDEX_TYPE, '', A.RDB$UNIQUE_FLAG,
C.RDB$CONSTRAINT_NAME, C.RDB$CONSTRAINT_TYPE FROM RDB$INDICES A,
RDB$INDEX_SEGMENTS B FULL OUTER JOIN RDB$RELATION_CONSTRAINTS C ON
A.RDB$RELATION_NAME = C.RDB$RELATION_NAME AND C.RDB$CONSTRAINT_TYPE =
'PRIMARY KEY' WHERE (A.RDB$SYSTEM_FLAG <> 1 OR A.RDB$SYSTEM_FLAG IS NULL) AND
(A.RDB$INDEX_NAME = B.RDB$INDEX_NAME) AND (A.RDB$RELATION_NAME =
UPPER('CUSTOMER')) ORDER BY RDB$INDEX_NAME

INTERBASE - isc_dsql_prepare
INTERBASE - isc_dsql_describe_bind
INTERBASE - isc_dsql_execute
INTERBASE - isc_dsql_fetch
INTERBASE - isc_dsql_fetch
INTERBASE - isc_dsql_fetch
INTERBASE - isc_dsql_fetch
INTERBASE - isc_dsql_fetch
INTERBASE - isc_dsql_fetch
INTERBASE - isc_commit_retaining
INTERBASE - isc_dsql_free_statement
INTERBASE - isc_dsql_free_statement
INTERBASE - isc_dsql_fetch

➤ Listing 9

14 The Delphi Magazine Issue 70

TSQLTable which gets opened, you
will see Listing 9 in the memo.

By default, TSQLMonitor adds all
activity to its TraceList TStrings
but you can have greater control
over the process than this if you
wish: add the Listing 10 OnTrace
event to the TSQLMonitor.

This event adds the text from the
CBInfo parameter to the memo.
The result is the same as for the
previous example, except that the
memo is updated continuously.
The OnTrace event is called before
the string is added to TraceList and
gives you the opportunity of pre-
venting the string from being
added to TraceList by setting Log-
Trace to False. This is advisable if
you have no intention of using the
TraceList property. The CBInfo
parameter is a SQLTraceDesc record
which has the event description
(pszTrace), the length of the descr-
iption (uTotalMsgLen), some inter-
nal information (ClientData), and
the event category (eTraceCat).
Unfortunately, eTraceCat is not set
in the current version of dbExpress
so you cannot use this for filtering
events. Another limitation of the
current version is that you can’t
use it to view parameter data being
passed back and forth. This is
especially useful for spying on the
data used in UPDATE, INSERT and
DELETE statements.

TSQLMonitorDialog
TSQLMonitor has no preconcep-
tions about how the data it
receives will be used by the devel-
oper. Consequently, as you have

seen from the previous example, it
has no built-in user interface, so
you must provide some means by
which the log can be viewed. It
occurred to me that many develop-
ers will simply want to view this log
in the same way that the BDE’s SQL
Monitor allows the log to be
viewed, so I wrote a simple compo-
nent, TSQLMonitorDialog, which
behaves like the BDE’s SQL Moni-
tor: it is included on this month’s
disk. Figure 2 is a screenshot of the
same sequence shown for the
TSQLMonitor example. The Type
column is a guess made by inter-
preting the string. As such it may
not yield the same results as when
this feature is properly hooked up
in dbExpress.

TSQLMonitor Analysis
If you look back at the list of
instructions displayed by TSQLMon-
itor in the memo you can see what
dbExpress has to do to open a
table. The first SQL statement
which is executed is select * from
CUSTOMER. The next statement exe-
cuted is rather curious. Just as for
SQL Monitor in the BDE, you can
see what dbExpress is doing but it
doesn’t necessarily follow that you
can understand it. This second
SQL statement retrieves a list of
the fields which make up the
indexes of the CUSTOMER table. The
relevant columns of the result set
are shown in Table 1.

What is curious about this
second SQL statement is the col-
umns which are used for padding.
For example, the first two columns
always return 0 and a comma. We
can only guess as to why the SQL

statement is formulated in this way
but one possible explanation is
that the code which uses the result
set retrieves columns by their
ordinal position and not by their
field name. The SELECT statement
might have been changed since it
was originally written and in order
to maintain the ordinal position of
the columns padding columns
have had to be used. But this is just
supposition.

From the trace we can see that
this SELECT statement is followed
by six fetches. This is because
there are five rows in the result set
and the sixth fetch is needed to hit
the end of file. After this is a single
fetch which is the retrieval of the
first record in select * from
CUSTOMER statement.

What is interesting about this
trace is that no additional meta-
data is retrieved for the fields in
the result set. This is one of the
goals of dbExpress, to avoid the
problems of metadata caching
which the BDE endured. It is also
interesting to note that if you close
the dataset and reopen it (without
shutting down the application)
then the trace you see is exactly
the same the second time around.
This illustrates that dbExpress
does not cache metadata.

If you exchange the TSQLTable for
a TSQLClientDataSet then you will
see that the SELECT statement used
to retrieve the data is opened, all of
the data is retrieved and then
closed. When the client dataset’s
ApplyUpdates is executed you can
monitor the UPDATE, INSERT and
DELETE statements which result.

Performance
One of the main goals of dbExpress
is to provide high performance.
One of the strategies for achieving
this lies in its design. The only way
to read result sets in dbExpress is
through a read-only, forwards only

procedure TForm1.SQLMonitor1Trace(
Sender: TObject;
CBInfo: pSQLTRACEDesc;
var LogTrace: Boolean);

begin
Memo1.Lines.Add(CBInfo.pszTrace);
LogTrace:=False;

end;

➤ Listing 10

➤ Figure 2

16 The Delphi Magazine Issue 70

cursor. For most database engines
this cursor is the fastest available
and thus dbExpress is making the
best use of its DBMSs. In addition,
dbExpress avoids reading extra
schema information.

A direct performance compari-
son between dbExpress and the
BDE or ADO is problematic at best,
as it is difficult to find examples
which truly compare like with like.
Even in such examples it can be
argued that the test favours one
database middleware over another
since it ignores all of the features
which are not getting used in the
other. In short, the subject of per-
formance is a minefield and this
subject alone could take a whole
article or more. However, in an
attempt to provide some minimal
answer to this question I will say
that dbExpress’s design certainly
lends itself to better performance
in theory and that in some tests
which I have performed, compar-
ing dbExpress connection, open-
ing and traversing InterBase result
sets with similar operations for the
BDE, dbExpress has equal or better
performance.

dbExpress Deployment
One of the fundamental goals of
dbExpress is ease of installation
and uninstall. dbExpress achieves
this goal in spades. To deploy your
dbExpress application you copy
the relevant dbExpress library (for
InterBase, DBEXPINT.DLL on Win-
dows, libsqllib.so.1 on Linux) to
the end-user’s machine and place it
where it can be found. There is no
messing around with the registry
or INI files. If you intend to use
client datasets (TClientDataSet,
TSQLClientDataSet) then you must
also copy MIDAS.DLL or midas.so to
the end-user’s machine. Lastly you
must install your DBMS on the

user’s machine. In the case of
InterBase this means copying
GDS32.DLL (on Windows) or
libgds.so.0 (on Linux) to the user’s
machine. To uninstall this example
on Windows you need simply to
delete DBEXPINT.DLL, MIDAS.DLL
and GDS32.DLL. Once again, there is
no messing around with the
registry or INI files.

Under normal circumstances,
you do not need to install
dbxdrivers or dbxconnections on
the user’s machine. If, however,
you have set LoadParamsOnConnect
to True or have used LoadParams-
FromINIFile, then you will need to
deploy these files as well.

As for the dbExpress footprint, it
is tiny. The sum of DBEXPINT.DLL
(116Kb), MIDAS.DLL (273Kb) and
GDS32.DLL (353Kb) is 742Kb which
is barely a fraction of the BDE size.

Statically Linking dbExpress
An alternative to distributing the
EXE with a set of DLLs is to stati-
cally link the DLLs into the EXE. For
an InterBase application, simply
include dbexpint in the uses clause
and the dbExpress InterBase func-
tions will be included in the EXE.
You can see this by checking the
size of the EXE before and after. In
addition, rename dbexpint.dll and
you’ll see the statically linked EXE
will run without error (whereas a
dynamically linked EXE would fail
because the DLL is missing). There
are similar units for each of the
dbExpress drivers. In addition to
this, you can statically link
MIDAS.DLL into your program by
including midaslib and crtl in the
uses clause. The result is a single
EXE which requires no configura-
tion and no installation (assuming
the DBMS is already installed).
This is a significant step forward in
application deployment.

dbExpressPlus
Before I wrap up this article I want
to mention dbExpressPlus. This is
a freeware set of components
developed by Thomas Miller
which enhance dbExpress. It is
expected to be on the Delphi 6
Companion CD and will also be
available from www.bss-software.
com after the release of Delphi 6.
Its components include TSQLMeta-
Data, TSQLScript, TSQLDataPump and
TSQLAsciiPump and it is well worth a
look.

Conclusion
dbExpress’s goals were to have a
small footprint, be easy to install
and uninstall, be cross-platform
and to have exceptional perfor-
mance. It is fair to say that
dbExpress has certainly achieved
the first three goals and appears to
have achieved the last.

At the time of writing, dbExpress
is showing its youth, as various
features have not yet been imple-
mented (for example, trace cate-
gory in TSQLMonitor, tracing of
parameters in TSQLMonitor, sup-
port for other transaction isolation
levels via xilCUSTOM, drivers for
SQL Server, Sybase, Informix, sup-
port for the most recent MySQL),
but you can rest assured that this
is simply a matter of time.

Guy Smith-Ferrier is a Senior
Delphi Consultant for Borland’s
Professional Services Organisa-
tion in the UK. Contact Guy at
gsmithferrier@capellasoft.com

© 2001 Capella Software Ltd
The opinions of the author are not
necessarily the opinions of Borland

RDB$RELATION_NAME RDB$INDEX_NAME RDB$FIELD_NAME RDB$FIELD_POSITION

CUSTOMER CUSTREGION COUNTRY 0

CUSTOMER RDB$FOREIGN23 COUNTRY 0

CUSTOMER RDB$PRIMARY22 CUST_NO 0

CUSTOMER CUSTNAMEX CUSTOMER 0

CUSTOMER CUSTREGION CITY 1

➤ Table 1

	Working Without dbxdrivers And dbxconnections
	Using dbExpress MetaData
	TSQLDataSet.SetSchemaInfo
	Executing SQL Directly
	dbExpress Error Codes
	Connection Cloning
	TSQLMonitor
	TSQLMonitorDialog
	TSQLMonitor Analysis
	Performance
	dbExpress Deployment
	Statically Linking dbExpress
	dbExpressPlus
	Conclusion

